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Abstract

This paper presents the design and implementation of

a multi-resolution graph cuts (MRGC) for stereo-motion

framework that produces dense disparity maps. Both stereo

and motion are estimated simultaneously under the origi-

nal graph cuts framework [7]. Our framework extends the

problem from one to five dimensions, creating a large in-

crease in complexity. Using three different multi-resolution

graph cut algorithms, LDNR, EL and SAC, we reduce the

number of pixels m and the number of labels n that limit the

α − β swap algorithm (with complexity O(mn2) required

from the definition of our semi-metric smoothness function.

This results in a reduction of computation time and the abil-

ity to handle larger images and larger label sets. The choice

of the three MRGC algorithms to use in computation deter-

mines the appropriate level of accuracy and computation

time desired.

1. Introduction

The goal of computer vision is to design an artificial sys-

tem that models the world through the analysis of informa-

tion from images. One area of research is to create a model

of the world through three-dimensional scene reconstruc-

tion. This type of research has applications in areas such as

space, medical, entertainment, historical, criminal investi-

gation, and object modeling.

Two areas of focus in computer vision, stereo-vision and

motion estimation, handle scene reconstruction. Stereo al-

gorithms infer depth of perceived scene points from two im-

ages taken from different viewpoints. Motion algorithms

determine scene structure from two temporally separated

images. A key issue in both cases is the problem of corre-

spondence: determining matching elements (scene points,

features, lines) between images. The position difference

between corresponding features is defined as the disparity,

which has an inverse relationship with depth. Disparity es-

timates for every single pixel in an image form a dense dis-

parity map. Problems in establishing visual correspondence

arise due to lighting and scene assumptions, camera sensor

noise, textureless regions, depth discontinuities and occlu-

sions.

1.1. Previous Approaches

Previous approaches involved both local and global

methods. Local methods, often called window-based meth-

ods or correlation-based methods, find the optimal dis-

placement of a fixed sized region between two consecu-

tive frames. Typically these methods compare intensities

within the region according to some likeness measure. Ob-

stacles lie in the choice of window size and the assumption

as to which motion model to incorporate over the region.

Shiftable windows [3] and windows with adaptive sizes [15]

are common techniques for varying the window size. In per-

haps the most well known local method, Lucas and Kanade

[14] use a local constant motion model for the optical flow

and determine a weighted least squares solution.

Global methods provide greater accuracy compared to

local methods, but have the disadvantage of creating a

higher computation cost. Generally, they formulate a global

energy function composed of a data term and a smoothness

term.

E(d) = Edata(d) + λEsmooth(d). (1)

Measuring the agreement between the disparity function

d and the input image pair is encoded in the data term,

Edata(d). Meanwhile, the smoothness assumptions made

by the algorithm are embedded in the smoothness term,

Esmooth(d), which is made more tractable by restricting the

smoothness term to only neighbouring pixels. In regulari-

sation techniques [12], Horn and Schunck are able to over-

come the aperture problem but then encounter problems at

object boundaries. Brox et al.[17] handle object boundaries

by employing robust estimators, developed by Black and

Anandan [2], on both the data and smoothness terms of their

global energy function. This is the current state of the art in



optical flow computation. Other global methods use differ-

ing methods to minimize the global energy function. Some

methods are simulated annealing [10], highest confidence

first [8] and mean-field annealing [9].

Graph cuts [5, 6, 7, 4, 13, 18] is an example of an op-

timization approach that computes visual correspondence.

The method incorporates a global energy function and a

maximum flow technique to provide very accurate results.

However, like most optimization approaches, it has a high

computational cost. The technique depends greatly on the

number of pixels in the image, or image size, and the size

of the disparity range, which translates directly to the num-

ber of labels. Nowadays, image sequences are generally

640 × 480 pixels in size or greater and typically contain

scenes with large object or camera motion, making this

method intractable and very slow. Veksler [19] studies the

problem of search-space reduction for graph cuts, although

she concludes the multiresolution approach is a failure. The

work in [19] is limited to stereo only (using the α-expansion

algorithm), and reports an average speed up factor of 2.8.

In this paper, we address the limitations of the graph cuts

technique described above, but in the context of the α-β

swap algorithm, with potentially much larger label spaces

than those found in [19] as we are interested in four-frame

stereo-motion. The goal of this work is to provide a frame-

work to compute visual correspondence, or dense dispar-

ity maps, with increased speed, reduced computational cost

and the ability to handle larger images and disparities, all

the while maintaining high accuracy. The key to achieving

our goals is the implementation of a multiscale technique

for graph cuts that encodes both the combined stereo and

motion constraints. The basic assumption is that a multi-

scale approach allows for a method to quickly initialize the

objective function closer to the global minimum than if it

were left to its own devices. This speeds up the minimiza-

tion step and allows for larger disparities and larger images.

To improve the accuracy, imposing both stereo and motion

constraints should result in greater accuracy than using only

stereo or motion constraints separately.

The rest of this paper is organized as follows: Sec-

tion 2 discusses the problems with the original graph cuts

for stereo [7]. Next, we provide a detailed description of

the design of an objective function that encodes both stereo

and motion constraints and the methodology involved in

creating a multiscale method in Section 3. In Section 4, we

present three multi-resolution graph cut (MRGC) for stereo-

motion algorithms. Finally, we present resulting disparity

maps and their analysis in Section 5, with Section 6 provid-

ing conclusions and possible directions for future work.

2. Graph Cuts

In this section, we analyze the original graph cuts tech-

nique for stereo [5, 6, 7, 4, 13, 18]. Graph cuts takes a

graph theory approach to finding a solution to the energy

minimization problem. Nodes in the graph represent image

pixels while the graph terminals represent every possible

label. Edges between nodes are weighted according to our

smoothness term Esmooth(d), while the data term Edata(d)
is used to weight the edges between nodes and terminals.

Finding a solution is possible by breaking down the graph

into many two-terminal graphs, determining which config-

uration has the lowest energy. Once each pixel is attached

to only one terminal, it is assigned that terminal’s label or

disparity value.

In graph cuts, the global energy function is the sum of

our data term plus a weighted smoothness term:

E(dp) = Edata(d) + λEsmooth(d)

=
∑

p∈P

Dp(dp) +
∑

p,q∈N

Vp,q(dp, dq) . (2)

where d is a labeling of the image, p and q are neighbouring

pixels, N is the neighbourhood of p.

The data term Edata evaluates the level of correspon-

dence between values in the input image pair while reducing

its sensitivity to image sampling [1, 18]. Since the search is

one-dimensional for stereo disparity, we find how well pixel

p fits into the real valued range of disparities (d− 1

2
, d+ 1

2
).

Cfwd(p, d) = min
d− 1

2
≤ x ≤d+

1
2

|Ip − I ′p+x| .

We represent p + x as a pixel which has coordinates of p

shifted by disparity x. I ′ represents intensities in the right

image. Fractional values I ′p+x are obtained by linear inter-

polation between discrete pixel values. Crev(p, d) is com-

puted similarly but in the reverse direction. Thus, a single

data term is

D(p, d) = (min{Cfwd(p, d), Crev(p, d), const})2 (3)

where const is a constant value that ensures robustness.

The original graph cuts for stereo algorithm chose a

piecewise constant prior as their smoothness term Esmooth.

Formally, given one-dimensional stereo disparity labels d1

and d2, the smoothness term is defined as

Vp,q(d1, d2) = up,q · (1 − δ(d1 − d2)) (4)

where

up,q = U(|Ip − Iq |) =

{

2K if |Ip − Iq| ≤ τI

K if |Ip − Iq| > τI

(5)

with K as our penalty constant and τI as our intensity differ-

ence threshold. τI is found experimentally with the optimal

setting being 5. This function satisfies the three properties

of a metric [7], formally defined as

Vp,q(α, β) = 0 ↔ α = β

Vp,q(α, β) = Vp,q(α, β) ≥ 0
Vp,q(α, β) ≤ Vp,q(α, γ) + Vp,q(γ, β)

(6)



With a smoothness term defined as a metric, the use of the

much faster α-expansion algorithm for two-terminal graph

building O(mn) is allowed (m is the number of pixels and

n is the number of disparity values).

On the other hand, for motion estimation disparity val-

ues are two-dimensional. A similar data term can be used

except that it is now extended to account for the second di-

mension when reducing the influence of image sampling.

The smoothness term, however, requires that we define the

function in terms of a semi-metric since it does not satisfy

the triangle inequality (third property of Equation 6). Thus,

our smoothness term is that of a piecewise smooth prior.

Formally, the interaction functional is

Vmotp,q
(dp, dq) = λmin(const, A) (7)

where

A = (dh
p − dh

q )2 + (dv
p − dv

q)2 . (8)

We enforce robustness by const, λ restricts the influence

of the smoothness term and the superscript terms v and h

denote the vertical and horizontal components of the mo-

tion vector, respectively. As such, we are forced to use the

slower α-β swap algorithm for two-terminal graph build-

ing O(mn2). Reducing the number of labels becomes even

more vital in effectively decreasing computation time.

3. Multi-Resolution Graph Cuts (MRGC) for

Stereo-Motion

Combining both stereo and motion constraints provides

tighter constraints on the system than either stereo or motion

constraints used separately. In turn, this should have the

desired effect of improving accuracy. Assuming the input to

the system consists of four rectified images: Lt, Rt, Lt+1,

Rt+1. These are, respectively, the left and right stereo pairs

at time t and t + 1 of a stereo video sequence.

Refer to Figure 1 where we establish Leftt as our refer-

ence frame. A point in our reference frame pLt
is related to

its corresponding points in the other images by the follow-

ing four relationships

pLt
+ dt = pRt

for stereo pair at time t

pLt
+ ~dL = pLt+1

for motion left pair

pLt+1
+ dt+1 = pRt+1

for stereo pair at time t + 1

pRt
+ ~dR = pRt+1

for motion right pair

(9)

where disparity values dt, dt+1, ~dL and ~dR are stereo pairs

at time t, t + 1, left-motion image pairs, and right-motion

image pairs, respectively. Thus, we can impose the follow-

ing circular combined stereo-motion constraint.

0 = dt + ~dR − dt+1 − ~dL . (10)

dt+1

dt

pLt pRt

pLt+1

~dL
~dR

Leftt+1 Rightt+1

Leftt Rightt

pRt+1

Figure 1. Example of two stereo image pairs
((Lt, Rt) and (Lt+1, Rt+1)) at times t and t + 1,

respectively. A point pLt
in the reference

frame Leftt is related to its corresponding
points in the other images via established

disparity values dt, dt+1, ~dL and ~dR for stereo

pairs at time t, t + 1, left-motion image pairs,
and right-motion image pairs, respectively.

The downside to this approach is the large increase in the

label set. For stereo, labels are only one-dimensional. Mo-

tion has two-dimensional labels. However, in our case, the

number of labels is now six-dimensional. Given rectified

images, it is possible to reduce this down to five dimen-

sions. Once we obtain the vertical direction in one motion

pair, we assume that the other motion pair has the same ver-

tical disparity. This would reduce the number of labels to

|L| = stx × stx × (motx × moty) × (motx) . (11)

where stx denotes the number of possible labels for stereo

computation in the horizontal direction and motx and moty
are the possible number of labels for motion in the horizon-

tal and vertical directions, respectively. The | · | notation

signifies the number of elements in the label set rather the

absolute value function.

We formulate our global energy function in the same

form as Equation 2. Since we need two stereo estima-

tions and two motion estimations in the combined stereo-

motion constraint, we combine the data terms for graph

cuts for stereo and for motion. The stereo terms are

Cst(pLt
, fdt

p ) and Cst(pLt+1
, f

dt+1

p ), and the motion terms

are Cmot(pLt
, f

~dL
p ) and Cmot(pRt

, f
~dR
p ), Our resulting

data term for pixel p given label fp is formulated in a similar

fashion to a L2 norm.

Dp(fp) = Dp(f
dt
p , f

dt+1

p , f
~dL
p , f

~dR
p )

= min(τDcutoff
, A)

(12)



edge weight for

tαp Dp(α) +
∑

q∈Np

q 6∈S

Vp,q(α, fq) p ∈ S

tβp Dp(β) +
∑

q∈Np

q 6∈S

Vp,q(β, fq) p ∈ S

ep,q Vp,q(α, β)
{p, q} ∈ N

p, q ∈ S

Table 1. Edge weight assignments for the α-β

swap algorithm. (Reproduced from [18].)

where

A = (Cst(pLt
, fdt

p )2 + Cmot(pRt
, f

~dR
p )2+

Cst(pLt+1
, f

dt+1

p )2 + Cmot(pLt
, f

~dL
p )2)

1
2

(13)

and τDcutoff
is a constant used to make the data term robust

to outliers.

We also use a set of super-labels to index into this large

six-dimensional set of labels.

f = {fdt , fdt+1, ~fdL , ~fdR} (14)

In a similar fashion, we formulate our smoothness term

to arrive at

Vp,q(fp, fq) = λmin(τScutoff
, B) (15)

where

B = (Vst(f
dt
p , fdt

q )2 + Vmot(f
~dR
p , f

~dR
q )2+

Vmot(f
~dL
p , f

~dL
q )2 + Vst(f

dt+1

p , f
dt+1

q )2)
1
2 .

(16)

The constant τScutoff
performs the same function as

in the data term; providing robustness to outliers, while

the λ term weights the influence of the smoothness

term. The stereo interaction functions Vst(f
dt
p , fdt

q ) and

Vst(f
dt+1

p , f
dt+1

q ) are described in Equations 4 and 5 with-

out the presence of their respective λ terms. The motion

interaction functions are taken from Equation 7.

The second problem with this approach is that we are

forced to use the slower α-β swap algorithm O(mn2) for

graph building with our smoothness function not satisfying

the triangle inequality. Edges in the graph are weighted ac-

cording to Table 1. Then the solution to each graph is found

using an effecient maximum flow algorithm [4].

To account for the large increase in the label set, we use a

multi-resolution approach to reduce computation time. This

allows a reduction of the number of labels and the number

of pixels within a known sampling factor. The second ben-

efit arises from level initialisation. Finding the solution at

one level of the pyramid initialises the next level of the pyra-

mid closer to its ideal solution. This benefit repeats itself at

every level of the pyramid until we reach the finest level of

the pyramid. This process is best illustrated in Figure 2.

Pre-processing

Use multiscale? Image Pyramid

Move Space

Upsampling and

Disparity Propagation

Level = finest

level?

Post-processing

YES

NO

NO

YES

Figure 2. Flow diagram of multi-resolution
graph cuts using stereo-motion constraints

system.

4. Three MRGC for Stereo-Motion algorithms

As is common in most stereo algorithms, there is a trade-

off between computation time and accuracy. Finding the

right balance between the two depends on the problem at

hand. We have formulated three different algorithms [20]

under the multi-resolution graph cuts (MRGC)for stereo-

motion framework with a different balance in mind. All

three algorithms have similar goals:

1. Reduce the number of pixels
2. Reduce the number of labels
3. Improve computation time

The general form of the multi-resolution approach is de-

scribed in Listing 2, called the Level Seeding MRGC (LS)

algorithm. Dmapi represents the disparity map obtained

for level i with Dmapfinal referring to the final solution

obtained at the finest level. The energy minimisation algo-

rithm (EMA in step 3c) is the step that varies among all the

algorithms described in this section.

4.1. Level Disparity Neighbourhood Re-
stricted (LDNR)

To greatly reduce the number of labels, we introduce the

Label Disparity Neighbourhood Restricted MRGC (LDNR)



1. Create Gaussian image pyramid

2. Determine disparity range for pyramid levels

3. FOR i = numLevels-1 to 0

IF i = (numLevels-1)

3a. Dmapi = Normal graph cuts for stereo-motion

ELSE

3b. Upsample disparity map

3c. Dmapi = EMA(Dmapi+1)

4. Dmapfinal = Dmap0

Table 2. General outline of all multiscale

methods. Dmapi represents the disparity
map obtained for level i, while EMA refers

to the energy minimization algorithm used in

computation.
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Figure 3. The (b) label disparity neighbour-

hood of (a) the labels present (in yellow).

algorithm. This algorithm uses the notion of a label dis-

parity neighbourhood to restrict the size of the label sets.

For each disparity label L present in the upsampled map,

we define a neighbourhood in the range ±δ around L (see

Figure 3, where δ = 1). Label swaps are restricted to being

between a label and the other labels in its neighbourhood.

The neighbourhoods are determined once at the start, so the

set of possible disparity values is fixed through all itera-

tions. We justify this restriction by assuming that disparity

estimates are already close to their ideal value, and as such,

have a very short disparity distance to travel. Now, rather

than swapping all possible label combinations, we swap be-

tween a reduced set.

4.2. Expanding Label Dispariy Neighbour-
hood at Every Iteration (EL)

The LDNR algorithm has one downside to it: its overall

accuracy suffers. It introduces an error propagation prob-
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(b) propagation error(a) ideal

level 3 level 2

Figure 4. After upsampling a disparity map

from level 3 to level 2, we find the presence

of label error propagation between levels of
the pyramid. The ideal solution for level 2

should be (a). However, a disparity value of

-2 is not in the label disparity neighbourhood
of disparity values of 0 or 4. Therefore, using

LDNR, the disparity map achieved at level 2
would be as in (b) where the disparity values

of -1 (red) and -3 (yellow) are errors that prop-

agate to subsequent levels.

lem, best illustrated in Figure 4. Once we find the solution

to level 3 of the pyramid, we upsample it to get the dispar-

ity map at level 2, where one pixel is upsampled to four. It

is in the uncertainty of these extra three pixels and restrict-

ing swaps to among label disparity neighbourhoods, that the

error propagation problem is introduced. Ideally, the solu-

tion would be (a), but what really results for that level is

(b), where the pixels with a disparity of -1 are incorrect.

This error propagates further down the pyramid until the

finest level of the pyramid is reached, where the accuracy

will greatly suffer.

To remedy this problem, we propose the EL algorithm

which allows the label set to grow at every iteration, while

it remained constant in the LDNR algorithm. Label swaps

are still done within label disparity neighbourhoods, but as

new labels are added during swaps, neighbourhoods are cre-

ated for them also, and swaps allow using values in these

new neighbourhoods. Over time the disparity values slowly



propagate towards their ideal values. This method slowly

increases the number of labels, but in practice, it rarely ex-

pands to all labels.

4.3. Swap All Combinations LDNR-MRGC
(SAC)

The third algorithm takes a different approach to solving

the error propagation problem. Called Swap All Combina-

tions LDNR-MRGC (SAC), it removes the restriction that

swaps must occur within label disparity neighbourhoods.

The algorithm initially determines the set of labels present,

Lpresent, in the upsampled disparity map, without growing

throughout the algorithm. Then we determine the label dis-

parity neighbourhoods for each of the labels in Lpresent,

adding these labels to a new label set Ltodo. Then the al-

gorithm computes α-β swaps for all of the combinations of

labels in Ltodo. This allows for larger disparity distances

travelled, improving the accuracy. However, there is a large

increase in label combinations, causing a large increase in

computation time. This allows pixels at discontinuities to

take values of neighbouring pixels in a fashion similar to

the filtering operation described in [19].

5. Computational Examples

In order to demonstrate the feasibility of the approach

we evaluate the performance of the Multi-Resolution Graph

Cuts for Stereo-Motion system in comparison to the orig-

inal graph cuts for stereo technique of [5, 7, 4, 13, 18].

Without the presence of any known ground truth data for

stereo image sequences with motion, we are forced to test

all algorithms against ground truth data obtained from the

Middlebury Stereo webpage [16]. All image sequences are

rectified stereo image sequences that contain static scenes

and robust objects.

The system implementation was done in C++ on a Pen-

tium IV 3GHz machine with 4GB of memory, running the

Linux operating system. We test our algorithms using the

Tsukuba sequence, which has a translating camera from

right to left. Our stereo-motion framework is tested using

three consecutive images of the sequence. For example, the

first stereo pair of images Lt and Rt correspond to images 3

and 4. The second stereo pair of images at time t + 1, Lt+1

and Rt+1, correspond to images 4 and 5.

Both the MRGC stereo algorithms and the MRGC mo-

tion algorithms generate Gaussian pyramids for two input

images. Figure 5 shows a sample of these Gaussian pyra-

mids generated by the Image Pyramid stage. In the pyra-

mid, the original input images are shown at level 0. For

stereo, image 1 and image 2 correspond to images Leftt
and Rightt, respectively. When computing motion, image 1
and image 2 correspond to the imt and imt+1 image pairs,

respectively.

Figure 5. Image pyramids for an image pair.
From left to right, the images proceed up the

pyramid, passing from the finest to the coars-

est level of the pyramid with each image axis
indicating the image dimensions in pixels.

5.1. Number of Labels

In the graph cuts framework, factors influencing compu-

tation time are the number of pixels m and the number of

labels n. This is evident in the time complexity equations

O(mn) for the α-expansion algorithm and O(mn2) for the

α-β swap algorithms.

Figure 6 shows the results of varying the number of la-

bels and their effect on processing time. In the top graph,

we compare the original stereo graph cuts algorithm and the

MRGC stereo algorithm. The bottom graph compares the

standard motion graph cut algorithm and the MRGC motion

version. As the number of labels increases, the computa-

tion time increases. During computation, we only compute

unique label combinations, which explains the near linear

curve of α-expansion O(mn) for stereo. For motion, it ap-

pears to follow O(mn2) for the α-β swap algorithm. How-

ever, no regression analysis has been done to confirm these

interpretations. While it may seem odd to explore label sets

larger than those known to be present, it should be noted

that we will not always know the correct disparity range in

advance. Also, another important result is that the MRGC

algorithm for motion starts to out-perform the standard mo-

tion graph cuts algorithm in terms of computation time once

the label set sizes start to become large.

Figure 7 demonstrates this characteristic for all algo-

rithms implemented. We can see that we exhibit near linear

computation time for stereo graph cuts algorithms, while

we do better than quadratic computation time for the mo-

tion and combined stereo-motion algorithms.

5.2. Accuracy

For accuracy measurements, disparity values are only

considered in regions of non-occlusion. From top to bot-

tom, left to right, Figure 8 shows the disparity maps for

the MRGC motion algorithm, LDRN, EL and SAC stereo-

motion algorithms (where we only show the first motion

pair of images in the four image set). Similarly, Table 3
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Figure 6. Number of labels versus time to
convergence for the original stereo graph

cuts algorithm and the LS stereo graph cuts

algorithm (top) and the motion graph cuts al-
gorithm (bottom). The dotted vertical line in-

dicates the range of disparities known to be

actually present in the data.

shows the accuracy and time results we obtained for each

algorithm. In the disparity maps, we can clearly see that

LDNR displays the error propagation problem, while EL

and SAC recover from it. However, both these algorithms

increase in computation because they compute more label

combinations. One thing to notice when looking at the mo-

tion results is that the data supports the notion that compu-

tation time will decrease using a multi-resolution approach.

6. Conclusions and Future Work

We have developed a a multi-resolution graph cuts for

stereo-motion system to address the visual correspondence

problem for stereo vision and motion estimation that is able

to handle larger images and larger label sets, as well as,

reduce the computation time.

The stereo-motion framework increased the time com-

plexity of the problem by increasing the number of dimen-

sions from one to five (one-dimension for each of the two
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Figure 7. The relationship between the num-

ber of labels used in an algorithm and the
time to convergence for all graph cut algo-

rithms (stereo, motion and combined stereo-
motion).

stereo image pairs and two-dimensions for the motion im-

age pairs). This required the use of the much slower α-β

swap algorithm for graph building. However, in this frame-

work we are still able to establish the trade-off between an

increase in comptuation time that results in an increase in

accuracy. This is best exemplified in our three MRGC al-

gorithms: LDNR, EL and SAC; where LDNR is the fastest

but least accurate algorithm and SAC is on the opposite end

with the slowest but most accurate algorithm.

The system developed has many areas to investigate fur-

ther to decrease computation time and increase accuracy.

The following are issues for future work:

• Finding the fundamental matrix between motion im-

age pairs, according to [11], so that the search space

for correspondence becomes one-dimensional, reduc-

ing the number of dimensions from five to four.

• Formulate a smoothness term in the form of a metric,

allowing for the use of the much faster α-expansion

algorithm.

• Determine an improved convergence criteria for the

energy minimization techniqe since the system energy

has nearly stabilized after 4-5 iterations.

• Compute sub-pixel accuracy disparity measurements

by breaking down our label sets even further.
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